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Abstract: Spaced repetition is a human learning technique focused on optimizing time intervals between a student’s repe-
titions of the same information items. It is designed for the most effective long-term high-retention knowledge
acquisition in terms of a student’s time spent on learning. Repetition of an information item is performed
when its estimated recall probability falls to the required level. Spaced repetition works particularly well for
itemized knowledge in areas requiring high-volume learning like languages, computer science, medicine, etc.
In this work, we present a novel machine-learning approach for the prediction of recall probability developed
using the massive repetition data collected in the SuperMemo.com learning ecosystem. The method predicts
the probability of remembering an item by a student using an LSTM neural network. In our experiments, we
observed that applying the spaced repetition research expert algorithms (Woźniak et al., 2005), like imposing
the negative exponential function as the output forgetting curve, increases the LSTM model performance. We
analyze how this model compares to other machine-learning or expert methods such as the Leitner method,
XGBoost, half-life regression, and the spaced repetition expert algorithms. We found out that the choice of
evaluation metric is crucial. Furthermore, we elaborate on this topic, finally selecting macro-average MAE
and macro-average Likelihood for the primary and secondary evaluation metrics.

1 INTRODUCTION

Spaced repetition is the idea to improve learning pro-
cess for humans by optimizing the time intervals be-
tween which the same material, for instance a word
in a foreign language (in general: a repetition item),
is presented to the user. E-learning systems based on
spaced repetition are used for courses based on a large
number of atomic items, for instance in learning for-
eign (or programming) languages (especially their vo-
cabulary) or acquiring fact-based knowledge.

The idea of spaced-repetition software was pi-
oneered by Piotr Woźniak and SuperMemo with a
number of expert algorithms. In this paper, we
train a number of machine-learning-based systems,
using massive repetition data obtained through the
courtesy of SuperMemo.com platform, and compare
them against simple baselines and the original spaced-
repetition expert algorithms (Woźniak, 1990; Woź-
niak et al., 1995).

The contributions of this paper are as follows:
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1. we propose a methodology for creating future-
proof challenges from real-world data for training
and testing spaced-repetition systems;

2. we discuss evaluation methodology and give mo-
tivation for using a new evaluation metric;

3. we propose a novel approach of a LSTM neural
network with exponential decay and compare it to
several baselines.

2 SUPERMEMO RESEARCH

SuperMemo is the world pioneer in applying opti-
mized spaced repetition to computer-aided learning
(Woźniak, 2018a). The name SuperMemo encom-
passes the method, software and company. In 1982,
Piotr Woźniak, then a student of molecular biology,
started experiments which led to the formulation of
his first spaced repetition algorithm in 1985. In 1987,
he created the first SuperMemo computer program.
It applied the so-called SM-2 algorithm(Woźniak,
1990) which was later made public and has been used
by other apps, including Anki, ever since. In the
following years, Woźniak kept improving his expert



algorithm. Successive versions adapted to the ac-
tual memory retention measured individually for each
user, thus allowing for truly individualized learning.
Independently of this, Woźniak developed his theory
of two components of memory (Woźniak et al., 1995),
which was fully applied in the SM-17 algorithm in
2016.

While optimizing the machine learning algorithms
described in this paper, we successfully used key el-
ements of Woźniak’s research. In order to smooth
the recall probability predictions yielded for increas-
ing intervals, we forced the LSTM networks (see Sec-
tion 8.7) to apply the negatively exponential function
which, as proposed by Woźniak, represents the shape
of the forgetting curve (Woźniak et al., 2005):

R = e−kt/S,

where:

• t — time,

• R — probability of recall at time t,

• S — stability expressed by the inter-repetition in-
terval that results in retrievability of 90% (i.e.
R = 0.9),

• k — constant independent of stability.

To some surprise, it not only matched the origi-
nal LSTM results but also slightly improved the algo-
rithm metrics.

3 SUPERMEMO.COM
ECOSYSTEM AND DATA

For training and testing the machine learning algo-
rithms described in this paper, we obtained repeti-
tion data collected by the SuperMemo.com online and
apps learning ecosystem. SuperMemo.com features
over 250 ready language courses for 23 different lan-
guages in the premium version and allows users to
learn from user-generated courses for free. Super-
Memo.com is often applied by users to learn sciences
requiring high-volume learning, including computer
science, programming and medicine.

SuperMemo.com courses differentiate between
presentation and repetition content. Presentation
pages are used for explaining the material learned.
When users progress through a course, presentation
items are shown once by default. They may in-
clude comments, complex texts or even parts of a
full feature interactive movie. Repetition items (ex-
ercises) contain atomic questions or tests which are
then scheduled in repetitions according to the Super-
Memo algorithm. While learning languages, these

are typically used to memorize vocabulary and gram-
mar. When learning programming, exercises can be
used to master coding rules and patterns (see Fig-
ure 1). In general, for optimum review scheduling and
learning, repetition items are recommended to meet
the minimum information principle (Woźniak, 1999)
(i.e. should be atomic and as simple as possible).

SuperMemo repetition items typically test active
production. Passive knowledge, like developed in
multiple choice tests, is considered to be a differ-
ent, limited competence. Therefore, unlike in other
popular e-learning applications which often shuffle
the same content along different types of multiple
choice tests during a session, SuperMemo exercises
are mostly question and answer pairs which are stable
in their form. Each exercise, irrespective of whether it
is active or passive (see Figure 2), is treated as a sepa-
rate item with its own learning characteristics and his-
tory. Each repetition is rated once on the first contact
during a session.

Exercises are rated on a 3-grade scale: I know,
Almost, Don’t know. The first two are both positive
grades meaning that the information is still remem-
bered, with the difference that answers rated I know
are not asked again in the same session, while those
rated Almost can be drilled until they are recalled suc-
cessfully. Based on the history of repetitions and
grades, the SuperMemo algorithm proposes the next
repetition for the day when the probability of recall
by the user is expected to fall to 90% (see Figure 3).

The SuperMemo algorithm develops and main-
tains separate memory models for every user and
course. Each exercise is scheduled for repetitions so
as to statistically reach the expected level of retention.

4 RELATED WORK

Half-life regression is a model of space repetition, a
modification of linear/logistic regression taking into
account the forgetting curve (Settles and Meeder,
2016). Note that Duolingo, the system for which
half-life regression was initially proposed, is based
on an approach different from SuperMemo — a gold-
standard value does not have to be 0 or 1, it is usually a
fraction representing the percentage of successful at-
tempts during a single session. In SuperMemo, a sim-
pler model is assumed (following the minimum infor-
mation principle), a model that can handle a larger
variety of courses.

Deep reinforcement learning have been also ap-
plied to the problem of planning spaced repetition
(Upadhyay et al., 2018; Yang et al., 2020; Sinha,
2019). The main drawback of reinforcement learning



Figure 1: Pages from general computer science and Java 8 programming courses, source: SuperMemo application.

Figure 2: Active and passive exercises in SuperMemo are
separate items for repetition scheduling, source: Super-
Memo application.

Figure 3: Forgetting curves applied in learning, source:
www.supermemo.com

in this context is that it requires simulated environ-
ments for training and evaluation. In this paper, we
opt for a more practical option of limiting ourselves
to the paradigm of supervised learning.

5 DATA SET

The data set is based on real retention data from the
SuperMemo application.

5.1 Assumptions

In order to make the challenge harder and to simu-
late cases when a new user joins the system or a new
course is created, the train/dev/test split was prepared
in such a way that no user and no course is shared be-
tween the data subsets. To be more precise, the MD5
sum is calculated for each user and for each course,
and users and courses are (separately) assigned to
the training, development and test sets based on its
checksums. This assignment has the following con-
sequences:

• the train/dev/test split is pseudo-random, but sta-
ble, when the splitting script is re-run on a (pos-
sible larger data set), no course/user will change
assignments,

• some data is “lost”, e.g. a user-course pair for
which the user is assigned to the train set and the
course to the dev set will not be used,

• . . . but on the other hand, we are avoiding un-
wanted data leakage between users and courses.
In other words, we pose the challenge as met-

alearning problem. We do not want to learn features
for specific users or courses, but rather learn to learn
to predict retention probabilities even for new users
(and courses).

For the development and testing sets, a single
repetition is selected, again using a stable pseudo-
random procedure based on MD5 checksums. All the
repetitions up to this one are available, including rep-
etitions related to other words (learning units), but the
history after the target repetition is removed.

For the training set, simply all the repetitions are
given.

The data set was prepared as a challenge on
an internal instance of the Gonito platform for
tracking evaluation results for machine-learning sys-
tems (Graliński et al., 2016).



Table 1: Basic statistics as regards the data set.

dataset size recall ratio

train 5757868 95.4%
dev 1152 89.1%
test 1611 88.6%

5.2 Statistics

Data used in this work was collected from users of
SuperMemo.com platform where MongoDB is used
to store information about every interaction with an
item, see Table 1 for basic statistics. We obtained
repetition date, previous and next interval set by al-
gorithm, real interval from last repetition, grade. The
task is to predict probability for the last grade.

6 EVALUATION METRICS

Selecting the most appropriate evaluation metric for
spaced repetitions models is a challenging task. In
(Settles and Meeder, 2016), three metrics were con-
sidered: mean absolute error (MAE), area under the
ROC curve (AUC) and Spearman’s half-life rank cor-
relation. In the case of the SuperMemo learning sys-
tem, the quality of probabilities is crucial, not just the
accuracy of predicted classes (forgotten vs retained),
as repetition intervals are directly based on probabil-
ity thresholds (which can be customized by the user).
Hence, we discarded Spearman’s rank and AUC.

Apart from MAE, we measured the quality of
probabilities using the likelihood metric, which is the
geometric mean of probabilities assigned to the cor-
rect class by the model. This is a variant of log loss
(if log loss is L, then likelihood is 1/eL), just made
slightly easier to interpret for humans.

Contrary to MAE, likelihood (and log loss) are ob-
viously highly sensitive to overconfident results. It
takes one example in which 0 was returned as the
probability for the positive class, or 1 for the negative
one, for the likelihood metric to collapse to 0. There-
fore, it is rational to assume some ε and return at least
ε for an example with the presumably negative class
and 1− ε for an example with the positive one.

Another problem is that there is a significant im-
balance in the training and testing sets — most sam-
ples (around 90 %) belong to the positive class (a user
retained a given unit in the memory) and a simple
null-model baseline (return 1.0 for MAE and 1−ε for
Likelihood) can lead to nominally high and hard-to-
beat evaluation results. The approach we chose was to
use the macro-average version of the metrics, i.e. the

evaluation metric is calculated separately for the neg-
ative and the positive class and then averaged. This
way, we attach the same significance to both classes,
no matter their numbers.

Finally, we selected macro-avg MAE as the main
evaluation metric and macro-avg likelihood as the
secondary metric (as implemented as MacroAvg/MAE
and MacroAvg/Likelihood in the GEval evaluation
tool (Graliński et al., 2019)). Our decision was con-
firmed by the fact that all reasonable methods we
tested beat the simple null-model baseline if macro-
avg MAE was used.

Note that for MAE the lower results, the better, for
Likelihood — the other way round.

For a different approach for the evaluation of
spaced-repetition systems, based on the of idea of al-
gorithm contest, see (Woźniak, 2018b).

7 EXISTING NON-ML METHODS

7.1 Null-Model Baseline

This is a simple baseline. During the inference, we
just always return probability 0.89, i.e. the mean from
training set for all samples.

7.2 Leitner

Leitner System is one of the simplest spaced repe-
titions methods, mainly used in flashcards (Leitner,
1999). The main idea is to repeat item on the next
day after learning it, if the user recalls information
correctly the interval is doubled. If not, the interval
should be divided by 2 or set to 1.

7.3 SuperMemo Open-Source
Algorithm SM-2

The first computer-based SuperMemo algorithm
(Woźniak, 1990) which, for every item, tracks the
number of times it has been successfully recalled and
the interval (i.e. the number of days since the item has
been repeated). For each review (attempt by the user
to recall the item), the algorithm recalculates easiness
factor (EF) based on the self-evaluated grade and sets
the date for the next repetition. In this work, we recal-
culate probability by taking interval from algorithm
and comparing it against the forgetting curve.



7.4 SuperMemo Expert Algorithm
SM-17

The SM-17 algorithm, developed in the years 2014-
16, applies the two component model of memory
(Woźniak et al., 1995). Starting from a common
memory model, SM-17 then stores and updates the
DSR (difficulty, stability, retrievability) matrices with
parameters individual for each user. Hill-climbing al-
gorithms are used to find the best estimation of an ex-
pected forgetting curve.1

8 MACHINE LEARNING
METHODS

We used the following machine learning methods: lo-
gistic regression, feed-forward neural network, half-
life regression, gradient boosting trees, and recurrent
neural network (RNN). Some of them incorporate ex-
ponential decay from the forgetting curve assumption.
This may help in training, but more importantly, it
does not lead to a counter-intuitive result when the
probability of recalling an item increases with time
when a student does not study it. For all methods, we
take the maximum item history sequence of 40 most
recent repetitions. This is necessary for all methods,
but RNN. Due to easier batching during RNN train-
ing, we also fixed the maximum sequence length to
40. If the item history sequence is shorter than 40,
we fill values with −1, unless stated otherwise in the
method description. We always set the likelihood to
max(min(1− ε, ŷ),ε), where ε = 0.05 . If we did not,
in the case when, e.g., model output is 0.0, and golden
truth is 1 for even one item, the likelihood metric is al-
ways reduced to 0 for the whole data set. All methods
were implemented in PyTorch (Paszke et al., 2019),
except gradient boosting trees, where we used XG-
Boost library (Chen and Guestrin, 2016).

8.1 Logistic Regression

Logistic regression is a simple but effective machine
learning method. In our case, it serves as a baseline
machine learning method due to ease of training.

8.2 Feed Forward Neural Network

For a simple feed-forward neural network, we imple-
mented a two-layer network with 4 hidden neurons, a

1See https://supermemo.guru/wiki/Algorithm_S
M-17 for the detailed description.

ReLU activation function in between, and a sigmoid
activation function on top.

8.3 Half-Life Regression

Half-life regression (HLR) is the Duolingo method
described in (Settles and Meeder, 2016). It is similar
to logistic regression but imposes exponential decay
of the forgetting curve.

It is based on an assumption of probability of re-
calling an item from memory is

p = 2
−∆

h (1)
Where ∆ is lag time (time in days elapsed from the

last time the course item was reviewed), h is the half-
life, which is the measure of the strength of students’
memory of the course item.

Half-life is estimated:

ĥΘ = 2Θ·x, (2)
where x are variables related to student course and

item history and Θ are model parameters.
Thus, the estimated probability of recalling a word

is:

p̂Θ = 2
−∆

2Θ·x (3)
During HLR training, the following loss function

ℓ is optimized:

ℓ(⟨p,∆,x⟩,Θ) = (p− p̂Θ)
2 +α

(
−∆

log2(p)
− ĥΘ

)
+λ∥Θ∥2

2,

(4)

where α and λ are hyperparameters.
This loss function optimizes not only p̂Θ, but ĥΘ

as well. The λ∥Θ∥2
2 is model weights L2 regulariza-

tion. Optimizing ĥΘ was found to improve loss in the
original Duolingo paper, but not on the SuperMemo
data set. Finally, we employed the following loss:

ℓ(⟨p,∆,x⟩,Θ) = (p− p̂Θ)
2 +λ∥Θ∥2

2 (5)

We implemented this method with some slight ad-
justments for the SuperMemo data set. The main dif-
ference is that the SuperMemo data set allows only
binary expected values (0 for not remembering in
the first attempt in the session, 1 for remembering
in the first attempt in the session). This is contrary
to Duolingo data set, which allows continuous value
based on the attempt number of remembering during
the session. Besides, we slightly changed the mini-
mum and maximum boundaries of duration elapsed

https://supermemo.guru/wiki/Algorithm_SM-17
https://supermemo.guru/wiki/Algorithm_SM-17


from the last word seen. It means that the word was
last seen below 1 day; we set it to 1 day. If the word
was last seen above 7 years, we set it to 7 years.
This is due to numerical stability because exponen-
tial decay assumptions cause floating point overflow
in some cases.

8.4 Standard Gradient Boosting Trees

Gradient boosting tree methods usually perform well
when it comes down to tabular data. In our exper-
iments, we employed XGboost (Chen and Guestrin,
2016) and used logistic regression as a loss function.
The main advantage of this method is its ease of use
and good performance out of the box. However, man-
ual search for better than default hyperparameters did
not yield significantly better results, so we keep them
default.

8.5 Gradient Boosting Trees with
Exponential Decay

XGBoost with logistic regression function does not
ensure exponential decay assumption. We model the
recall probability as

p̂ = e
−∆

o(x) , (6)

where o(x) is output of XGBoost model. Although, it
would be technically difficult to employ this assump-
tion into XGBoost and optimize p directly.

Instead, our approach was to optimize o using the
formula:

o =
−∆

ln(p)
. (7)

Due to equation 7 indeterminacy, when p = 0 or
p = 1, in practice we employed:

o =
−∆

ln(min(1− ε,max(ε, p)))
, (8)

where ε = 0.05.
During inference, recall probability is obtained

with equation 6.
This approach does not require XGBoost model

architecture modification but only target and predic-
tion transformation. In this method, we used default
XGBoost hyperparameters as well.

8.6 Standard RNN

RNN often yields good results in dealing with time
series. RNN can take a sequence of any length as
input, so its perfect for students learning history.

We implemented 1-layer Long short-term mem-
ory (LSTM) ((Hochreiter and Schmidhuber, 1997))
with 256 cell units and trained with MSELoss. Dur-
ing training, we set students learning history to a fixed
sequence length of 40 for optimal batching.

8.7 RNN with Exponential Decay

In order to impose exponential decay, we model the
probability of item recalling as

p̂(x) = e
−∆

eo(x) , (9)

where o(x) is output from the LSTM and ∆ is lag time.
Due to the floating point overflow of eo(x), we set the
maximum lag time to 3 years instead of 7 years.

For missing values, we set the probability of re-
membering to 1 and the maximum lag-time, which is
7 years.

9 RESULTS

Due to instability of half-life regression, RNN, and
RNN with exponential decay training, we trained the
models 10 times and averaged the results.

The results for all described methods are pre-
sented in Table 2. The best performing method in the
primary metric MacroAvgMAE is RNN with expo-
nential decay, and the best performing method in the
secondary metric MacroAvgLikelihood is the feed-
forward neural network. Standard XGBoost model
surpasses all other methods in not macro averaged
metrics, both MAE and Likelihood. In terms of
MacroAvgMAE imposing exponential decay helped
achieve RNN model better results but worsened XG-
Boost score. The second best-performing method is
SM17, which is an expert algorithm.

10 VERIFICATION ON
SYNTHETIC TEST CASES

We prepared a small synthetic data set to verify the re-
sults in 8 different cases of user learning history. Each
case consists of first student contact with an item and
3 consecutive recalls after some intervals and with rel-
evant grades (I know, Almost, Don’t know). After this,
we check the probability of recalling an item after 10,
20, 30, 100, 1000 days intervals as returned by a given
model; see results in 4.

After a manual inspection on this data set, we con-
cluded:



Table 2: Results of ml and non-ml methods on the SuperMemo.com dataset. Bolded text indicates the best result in the given
metric. MacroAvgMAE and MacroAvgLikelihood are primary and secondary metrics.

Method Likelihood↑ MAE ↓ MacroAvgLikelihood↑ MacroAvgMAE↓
mean from train 0.703±0.027 0.195±0.014 0.500±0.000 0.500±0.000
Leitner system 0.076±0.022 0.526±0.014 0.232±0.032 0.487±0.028
SM-2 0.143±0.040 0.411±0.014 0.269±0.038 0.427±0.025
SM-17 0.614±0.029 0.220±0.012 0.452±0.023 0.390±0.024
logistic regression 0.739±0.024 0.159±0.013 0.526±0.009 0.444±0.010
ff neural network 0.734±0.018 0.206±0.009 0.539±0.014 0.435±0.010
half-life regression 0.680±0.036 0.164±0.016 0.492±0.003 0.500±0.005
standard XGBoost 0.758±0.021 0.158±0.010 0.543±0.011 0.421±0.011
XGBoost with exp decay 0.715±0.025 0.196±0.013 0.509±0.002 0.488±0.003
standard RNN 0.744±0.022 0.163±0.012 0.531±0.009 0.440±0.010
RNN with exp decay 0.527±0.015 0.362±0.012 0.504±0.031 0.376±0.023

• XGBoost indicates high recall probability in all
cases, even after 3 consecutive recall fails (case 2)
and a long interval of 1000 days, which is not in
accord with common sense. This model cannot be
useful for real-world application, even though it
achieved a good MacroAvgMAE result of 0.421,
which also leads to the conclusion that automated
metrics do not always reflect expectations,

• standard XGBoost learned decay of recalling
probability; even though we did not impose it di-
rectly into the model,

• standard LSTM didn’t learn decay of recalling
probability (e.g. case 2) on its own,

• SM17, half-life regression and LSTM models
with exponential decay behave as expected.

11 CONCLUSION

Herein, we compared spaced repetition algorithms
based on neural networks (LSTMs) with simpler ma-
chine learning approaches and existing expert algo-
rithms. In general, methods based on machine learn-
ing yielded promising results (with the best result ac-
cording to our main evaluation metric obtained by an
LSTM). Still, some caveats need to be expressed:

• machine-learning methods, including LSTMs,
might give good results as measured with an eval-
uation metric, but still behaving in an impracti-
cal manner and breaking natural assumptions (e.g.
probability of retention not decreasing even for
very long intervals or even higher probabilities of
retention for longer intervals),

• this can be alleviated with modifications trans-
planted from expert methods (e.g. forgetting
curve as proposed by Woźniak),

• LSTM is susceptible to large variance and, in
practical terms, is more complicated to use than
expert methods,

• the ranking of methods depends heavily on the
evaluation metric chosen, we claim the evaluation
method we called MacroAvgMAE is the most rea-
sonable, but still it is far from obvious how this re-
lates to quality of learning, when a given method
is embedded within a real learning application.

One area of improvement for the method based on
LSTMs is to equip it with a mechanism to adapt for a
specific user/course, just the way expert methods such
as SM-17 do.
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Woźniak, P. A., Gorzelańczyk, E. J., and Murakowski, J. A.
(1995). Two components of long-term memory. Acta
neurobiologiae experimentalis, 55(4):301–305.

Woźniak, P. (1990). Optimization of learning. Master’s
thesis, University of Technology in Poznan. See also
https://www.supermemo.com/en/archives1990-
2015/english/ol/sm2.
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